671 research outputs found

    Recent resuts from DARKSIDE

    Get PDF
    DARKSIDE is a multi-stage program devoted to the direct detection of Dark Matter particles with a double phase liquid Argon Time Projection Chamber. Presently the DARKSIDE-50 detector is running underground at the Laboratori Nazionali del Gran Sasso. It is placed inside a 30 t liquid organic scintillator sphere, acting as a neutron veto and hosted by a 10 kt water Cherenkov detector. The DARKSIDE-50 setup with TPC filled with atmospheric argon is operating since November 2013 and we report here the first results of a Dark Matter search for a (1422 ± 67) kg×d truly background-free exposure. It can be translated into a 90% C.L. upper limit on the WIMP-nucleon cross section of 6.1×10−44 cm2, for a WIMP mass of 100 GeV/c2, being up to date the strongest limit obtained with an argon target

    Mitigation of 42^{42}Ar/42^{42}K background for the GERDA Phase II experiment

    Get PDF
    Background coming from the 42^{42}Ar decay chain is considered to be one of the most relevant for the GERDA experiment, which aims to search of the neutrinoless double beta decay of 76^{76}Ge. The sensitivity strongly relies on the absence of background around the Q-value of the decay. Background coming from 42^{42}K, a progeny of 42^{42}Ar, can contribute to that background via electrons from the continuous spectrum with an endpoint of 3.5 MeV. Research and development on the suppression methods targeting this source of background were performed at the low-background test facility LArGe. It was demonstrated that by reducing 42^{42}K ion collection on the surfaces of the broad energy germanium detectors in combination with pulse shape discrimination techniques and an argon scintillation veto, it is possible to suppress the 42^{42}K background by three orders of magnitude. This is sufficient for Phase II of the GERDA experiment

    Highly sensitive gamma-spectrometers of GERDA for material screening: Part I

    Full text link
    The GERDA experiment aims to search for the neutrinoless double beta-decay of 76Ge and possibly for other rare processes. The sensitivity of the first phase is envisioned to be more than one order of magnitude better than in previous neutrinoless double beta-decay experiments. This implies that materials with ultra-low radioactive contamination need to be used for the construction of the detector and its shielding. Therefore the requirements on material screening include high-sensitivity low-background detection techniques and long measurement times. In this article, an overview of material-screening laboratories available to the GERDA collaboration is given, with emphasis on the gamma-spectrometry. Additionally, results of an intercomparison of the evaluation accuracy in these laboratories are presented.Comment: Featured in: Proceedings of the XIV International Baksan School "Particles and Cosmology" Baksan Valley, Kabardino-Balkaria, Russia, April 16-21,2007. INR RAS, Moscow 2008. ISBN 978-5-94274-055-9, pp. 228-232; (5 pages, 0 figures

    Investigation of ASIC-based signal readout electronics for LEGEND-1000

    Get PDF
    LEGEND, the Large Enriched Germanium Experiment for Neutrinoless ββ\beta\beta Decay, is a ton-scale experimental program to search for neutrinoless double beta (0νββ0\nu\beta\beta) decay in the isotope 76^{76}Ge with an unprecedented sensitivity. Building on the success of the low-background 76^{76}Ge-based GERDA and MAJORANA DEMONSTRATOR experiments, the LEGEND collaboration is targeting a signal discovery sensitivity beyond 102810^{28}\,yr on the decay half-life with approximately 10tyr10\,\text{t}\cdot\text{yr} of exposure. Signal readout electronics in close proximity to the detectors plays a major role in maximizing the experiment's discovery sensitivity by reducing electronic noise and improving pulse shape analysis capabilities for the rejection of backgrounds. However, the proximity also poses unique challenges for the radiopurity of the electronics. Application-specific integrated circuit (ASIC) technology allows the implementation of the entire charge sensitive amplifier (CSA) into a single low-mass chip while improving the electronic noise and reducing the power consumption. In this work, we investigated the properties and electronic performance of a commercially available ASIC CSA, the XGLab CUBE preamplifier, together with a p-type point contact high-purity germanium detector. We show that low noise levels and excellent energy resolutions can be obtained with this readout. Moreover, we demonstrate the viability of pulse shape discrimination techniques for reducing background events.Comment: 18 pages, 12 figures, 3 table

    The DarkSide experiment: present status and future

    Get PDF
    DarkSideis a multi-stage program devoted to direct searches of Dark Matterparticles with detectors based on double phase liquid Argon Time Projection Chambe

    A New 76Ge Double Beta Decay Experiment at LNGS

    Full text link
    This Letter of Intent has been submitted to the Scientific Committee of the INFN Laboratori Nazionali del Gran Sasso (LNGS) in March 2004. It describes a novel facility at the LNGS to study the double beta decay of 76Ge using an (optionally active) cryogenic fluid shield. The setup will allow to scrutinize with high significance on a short time scale the current evidence for neutrinoless double beta decay of 76Ge using the existing 76Ge diodes from the previous Heidelberg-Moscow and IGEX experiments. An increase in the lifetime limit can be achieved by adding more enriched detectors, remaining thereby background-free up to a few 100 kg-years of exposure.Comment: 67 pages, 19 eps figures, 17 tables, gzipped tar fil

    Search for electron antineutrino interactions with the Borexino Counting Test Facility at Gran Sasso

    Full text link
    Electron antineutrino interactions above the inverse beta decay energy of protons (E_\bar{\nu}_e>1.8) where looked for with the Borexino Counting Test Facility (CTF). One candidate event survived after rejection of background, which included muon-induced neutrons and random coincidences. An upper limit on the solar νˉe\bar{\nu}_{e} flux, assumed having the 8^8B solar neutrino energy spectrum, of 1.1×105\times10^{5} cm2^{-2}~s1^{-1} (90% C.L.) was set with a 7.8 ton ×\times year exposure. This upper limit corresponds to a solar neutrino transition probability, νeνˉe\nu_{e} \to \bar{\nu}_{e}, of 0.02 (90% C.L.). Predictions for antineutrino detection with Borexino, including geoneutrinos, are discussed on the basis of background measurements performed with the CTF.Comment: 10 pages, 9 figures, 5 table

    Recent Borexino results and prospects for the near future

    Full text link
    The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. We review here the recent results achieved during 2013, concerning the seasonal modulation in the 7Be signal, the study of cosmogenic backgrounds and the updated measurement of geo-neutrinos. We also review the upcoming measurements from phase II data (pp, pep, CNO) and the project SOX devoted to the study of sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr antineutrino source placed in close proximity of the active material.Comment: 8 pages, 11 figures. To be published as proceedings of Rencontres de Moriond EW 201

    Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun

    Full text link
    The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as well as further validation of the LMA-MSW model of neutrino oscillations.Comment: Proceedings from NOW (Neutrino Oscillation Workshop) 201
    corecore